期刊简介
Aim Mathematical Methods in Data Science (MMDS) is an interdisciplinary, peer-reviewed academic journal dedicated to advancing the foundational role of mathematics in driving innovation and rigor in data science. Its core aim is to bridge the gap between mathematical theory and real-world data science applications, publishing high-quality research that develops, refines, or applies mathematical frameworks to address complex data-centric challenges. The journal seeks to foster scholarly dialogue across mathematics, statistics, computer science, and domain-specific fields (e.g., engineering, biology, finance), with the goal of enhancing the theoretical depth, methodological robustness, and practical impact of data science. Additionally, it aims to serve as a resource for researchers, practitioners, and educators—supporting the adoption of rigorous mathematical approaches to solve emerging data problems and shaping the future direction of data science as a discipline. Scope The journal encompasses a broad range of topics that integrate mathematical methods with data science, including but not limited to: Foundational mathematical frameworks for data science: Linear and nonlinear algebra, calculus of variations, optimization theory (e.g., convex/non-convex optimization, stochastic optimization), probability theory, and mathematical statistics (e.g., Bayesian inference, hypothesis testing, statistical learning theory) as applied to data analysis. Machine learning and deep learning: Mathematical foundations of supervised/unsupervised/reinforcement learning; theoretical analysis of neural networks (e.g., convergence, generalization, robustness); mathematical modeling of deep learning architectures (e.g., transformers, graph neural networks). Data representation and dimensionality reduction: Mathematical methods for feature extraction, manifold learning, sparse representation, and low-rank matrix/tensor decomposition; their application to high-dimensional data (e.g., image, text, sensor data). Uncertainty quantification and robustness: Mathematical approaches to modeling and mitigating uncertainty in data (e.g., probabilistic programming, fuzzy logic, robust statistics); analysis of data science models under noise, missing data, or adversarial perturbations. Graph theory and network data science: Mathematical modeling of graph-structured data (e.g., social networks, biological networks); methods for network analysis (e.g., centrality measures, community detection, graph embedding) using combinatorics, algebraic graph theory, or topological data analysis. Time series and spatio-temporal data: Mathematical methods for time series forecasting (e.g., differential equations, autoregressive models, wavelet analysis); spatio-temporal data modeling (e.g., Gaussian processes, geostatistics) for applications in climate science, epidemiology, or urban analytics. Domain-specific applications: Mathematical data science methods tailored to fields such as computational biology (e.g., genomic data analysis), finance (e.g., risk modeling, algorithmic trading), engineering (e.g., signal processing, computer vision), and environmental science (e.g., climate data assimilation).
征稿范围
投稿指南
论文格式要求
论文应包含摘要、关键词、引言、研究方法、研究结果、讨论和参考文献等部分。英文论文要求语言流畅,符合学术写作规范。
发表流程
- 作者投稿
- 初步审核
- 专家评审 (3天)
- 修改与校对
- 支付出版费用 (400 美元)
- 在线发表
- 数据库检索 (中国知网)
相关期刊
Journal of Economic Science Research
经济科学研究杂志
NASS Journal of Agricultural Sciences
农业科学
Journal of Zoological Research
动物研究
Journal of Smart Buildings and Construction Technology
智能建筑与施工工艺原建筑研究
联系我们
服务流程
专业高效的服务流程,为您的论文发表保驾护航
论文评估
我们的专业编辑团队将对您的论文进行全面评估,确定最适合的期刊选择和修改建议。
期刊推荐
基于您的研究领域和论文内容,我们将推荐最匹配的期刊,提高论文被接收的概率。
论文润色
专业编辑将对您的论文进行语言润色和格式调整,确保符合目标期刊的要求。
投稿协助
我们将协助您完成投稿过程,确保所有材料准备齐全,按要求提交。
跟踪反馈
实时跟踪审稿进度,及时反馈修改意见,协助您完成论文修改和最终发表。
服务优势
我们的专业团队为您提供全方位的学术服务支持
专业团队
由高校教授、资深编辑、行业专家组成的专业团队,确保服务质量
高录用率
丰富的期刊合作资源,提供精准期刊推荐,大幅提高论文录用概率
高效服务
3天快速审稿服务,及时反馈修改意见,加速论文发表进程
常见问题
解答您在论文发表过程中可能遇到的疑问
我们的专业编辑会根据您的研究领域、论文主题、影响力需求等因素,为您推荐最合适的目标期刊。我们会综合考虑期刊的影响因子、收录情况、审稿周期等因素,确保推荐的期刊与您的研究成果高度匹配。
我们的论文润色服务包括语言润色(语法、拼写、表达清晰度)、格式调整(符合目标期刊要求)、逻辑结构优化以及专业术语检查等。我们的编辑团队都具有相关领域的专业背景,能够确保润色后的论文既语言流畅又专业准确。
论文发表周期因期刊而异。一般来说,从投稿到接收需要3天的审稿时间,接收后到正式在线发表还需要1-3个月不等。我们会全程跟踪您的论文审稿进度,并在每个环节提供专业支持,尽可能缩短发表周期。
我们会在期刊详情页面提供详细的收录信息,包括中国知网等数据库。您也可以通过官方数据库(如中国知网、维普、万方等)查询期刊的收录情况。我们承诺推荐的所有期刊均为正规学术期刊,确保您的论文能够被相应数据库检索。
如果您的论文被拒稿,我们的专业编辑团队会帮您分析拒稿原因,并提供详细的修改建议。根据拒稿意见,我们会协助您进行针对性修改,然后推荐更适合的期刊重新投稿。我们的服务宗旨是确保您的研究成果最终能够成功发表。


